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Learning Objectives
After reading this chapter, you should understand:
– What regression analysis is and what it can be used for.
– How to specify a regression analysis model.
– How to interpret basic regression analysis results.
– What the issues with, and assumptions of regression analysis are.
– How to validate regression analysis results.
– How to conduct regression analysis in SPSS.
– How to interpret regression analysis output produced by SPSS.

Agripro is a US-based firm in the business of selling seeds to farmers and
distributors. Regression analysis can help them understand what drives
customers to buy their products, helps explain their customer’s satisfaction,
and informs how Agripro measures up against their competitors. Regression
analysis provides precise quantitative information on which managers can base
their decisions.
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7.1

7.2

Introduction

Regression analysis is one of the most frequently used tools in market research. In its
simplest form, regression analysis allows market researchers to analyze relationships
between one independent and one dependent variable. In marketing applications, the
dependent variable is usually the outcome we care about (e.g., sales), while the
independent variables are the instruments we have to achieve those outcomes with (e.g.,
pricing or advertising). Regression analysis can provide insights that few other techniques
can. The key benefits of using regression analysis are that it can:
1. Indicate if independent variables have a significant relationship with a

dependent variable.
2. Indicate the relative strength of different independent variables’ effects on a

dependent variable.
3. Make predictions.

Knowing about the effects of independent variables on dependent variables can
help market researchers in many different ways. For example, it can help direct
spending if we know promotional activities significantly increases sales.
Knowing about the relative strength of effects is useful for marketers because it
may help answer questions such as whether sales depend more on price or on
promotions. Regression analysis also allows us to compare the effects of variables
measured on different scales such as the effect of price changes (e.g., measured in
$) and the number of promotional activities.
Regression analysis can also help to make predictions. For example, if we have
estimated a regression model using data on sales, prices, and promotional
activities, the results from this regression analysis could provide a precise answer
to what would happen to sales if prices were to increase by 5% and promotional
activities were to increase by 10%. Such precise answers can help (marketing)
managers make sound decisions. Furthermore, by providing various scenarios,
such as calculating the sales effects of price increases of 5%, 10%, and 15%,
managers can evaluate marketing plans and create marketing strategies.

In the previous paragraph, we briefly discussed what regression can do and why it is a
useful market research tool. But what is regression analysis all about? To answer this
question, consider Figure 7.1 which plots a dependent (y) variable (weekly sales in $)
against an independent (x) variable (an index of promotional activities). Regression
analysis is a way of fitting a “best” line through a series of observations. With “best”
line we mean that it is fitted in such a way that it minimizes the sum of squared
differences between the observations and the line itself. It is important to know that
the best line fitted with regression analysis is not necessarily the true line (i.e., the line
that holds in the population). Specifically, if we have data issues, or fail to meet the
regression assumptions (discussed later), the estimated line may be biased.

Understanding Regression Analysis
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A visual explanation of regression analysis

Before we introduce regression analysis further, we should discuss regression
notation. Regression models are generally noted as follows:

y¼αþβ1x1þe

What does this mean? The y represents the dependent variable, which is the
variable you are trying to explain. In Fig. 7.1, we plot the dependent variable on
the vertical axis. The α represents the constant (sometimes called intercept) of
the regression model, and indicates what your dependent variable would be if all
of the independent variables were zero. In Fig. 7.1, you can see the constant
indicated on the y-axis. If the index of promotional activities is zero, we expect
sales of around $2,500. It may of course not always be realistic to assume that
independent variables are zero (just think of prices, these are rarely zero) but the
constant should always be included to make sure that the regression model has the
best possible fit with the data.
The independent variable is indicated by x1. β1 (pronounced as beta) indicates
the (regression) coefficient of the independent variable x. This coefficient
represents the gradient of the line and is also referred to as the slope and is shown
in Fig. 7.1. A positive β1 coefficient indicates an upward sloping regression line
while a negative β1 indicates a downward sloping line. In our example, the
gradient slopes upward. This makes sense since sales tend to increase as
promotional activities increase. In our example, we estimate β1 as 55.968,
meaning that if we increase promotional activities by one unit, sales will go up by
$55.968 on average. In regression analysis, we can calculate whether this value
(the β1 parameter) differs significantly from zero by using a t-test.
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Several data requirements have to be considered before we undertake a regression
analysis. These include the following:
– Sample size,
– Variables need to vary,
– Scale type of the dependent variable, and
– Collinearity.

The last element of the notation, the e denotes the error (or residual) of the equation.
The term error is commonly used in research, while SPSS uses the term residuals. If
we use the word error, we discuss errors in a general sense. If we use residuals, we
refer to specific output created by SPSS. The error is the distance between each
observation and the best fitting line. To clarify what a regression error is, consider Fig.
7.1 again. The error is the difference between the regression line (which represents
our regression prediction) and the actual observation. The predictions made by the
“best” regression line are indicated by y^ (pronounced y-
hat). Thus, the error for the first observation is:1

In the example above, we have only one independent variable. We call this
bivariate regression. If we include multiple independent variables, we call this
multiple regression. The notation for multiple regression is similar to that of
bivariate regression. If we were to have three independent variables, say index of
promotional activities (x1), price of competitor 1 (x2), and the price of competitor
2 (x3), our notation would be:

y¼αþβ1x1þβ2x2þβ3x3þe

Now that we have introduced some basics of regression analysis, it is time to discuss
how to execute a regression analysis. We outline the key steps in Fig. 7.2. We first
introduce the data requirements for regression analysis that determine if regression
analysis can be used. After this first step, we specify and estimate the regression
model. Next, we discuss the basics, such as which independent variables to select.
Thereafter, we discuss the assumptions of regression analysis, followed by how to
interpret and validate the regression results. The last step is to use the regression
model, for example to make predictions.

e1 ¼ y1 y^1

We need one regression coefficient for each independent variable (i.e., β1, β2, and β3).
Technically the βs indicate how a change in an independent variable influences
the dependent variable if all other independent variables are held constant.2

7.3 

7.3.1

ConductingaRegressionAnalysis
Consider Data Requirements for Regression Analysis

1
2Strictly speaking, the difference between predicted and observed y-values isThis only applies to the standardized βs.
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Use the regression model

Validate the regression results

Interpret the regression results

Specify and estimate the regression model

Test the assumptions of regression analysis

Consider data requirements for regression analysis

Steps to conduct a regression analysis

a larger sample size. With “larger” we mean around three times the required sample size if the
expected R2 is low, and about twice the required sample size in case of measurement errors or if
stepwise methods are used.

7.3.1.1 Sample Size
The first data requirement is that we need a sufficiently large sample size. Acceptable sample
sizes relate to a minimum sample size where you have a good chance of finding significant
results if they are actually present, and not finding significant results if these are not present.
There are two ways to calculate “acceptable” sample sizes.
– The first, formal, approach is a power analysis. As mentioned in Chap. 6 (Box 6.2),

these calculations are difficult and require you to specify several parameters, such
as the expected effect size or the maximum type I error you want to allow for to
calculate the resulting level of power. By convention, 0.80 is an acceptable level of
power. Kelley and Maxwell (2003) discuss sample size requirements.

– The second approach is through rules of thumb. These rules are not specific to a
situation but are easy to apply. Green (1991) proposes a rule of thumb for sample

sizes in regression analysis. Specifically, he proposes that if you want to test for
individual parameters’ effect (i.e., if one coefficient is significant or not), you

þneed a sample size of 104 k. Thus, if you have ten independent variables, you
need 104 þ 10 ¼ 114 observations.3

3Rules of thumb are almost never without issues. For Green’s formula, these are that you need a larger
sample size than he proposes if you expect small effects (an expected R2 of 0.10 or smaller). In
addition, if the variables are poorly measured, or if you want to use a stepwise method, you need

http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
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7.3.1.4 Collinearity
The last data requirement is that no or little collinearity is present. Collinearity is a data
issue that arises if two independent variables are highly correlated. Multicol- linearity
occurs if more than two independent variables are highly correlated. Perfect
(multi)collinearity occurs if we enter two (or more) independent variables with exactly the
same information in them (i.e., they are perfectly correlated).

7.3.1.2 Variables Need to Vary
A regression model cannot be estimated if the variables have no variation. Specifi-
cally, if there is no variation in the dependent variable (i.e., it is constant), we also do
not need regression, as we already know what the dependent variable’s value is.
Likewise, if an independent variable has no variation, it cannot explain any varia- tion
in the dependent variable.

7.3.1.3 Scale Type of the Dependent Variable
The third data requirement is that the dependent variable needs to be interval or ratio
scaled (scaling is discussed in Chap. 2). If the data are not interval or ratio scaled,
alternative types of regression need to be used. You should use binary logistic regression if
the dependent variable is binary and only takes on two values (e.g., zero and one). If the
dependent variable consists of a nominal variable with more than two levels, you should
use multinomial logistic regression. This should, for example, be used if you want to
explain why people prefer product A over B or C. We do not discuss these different
methods in this chapter, but they are intuitively similar to regression. For an introductory
discussion of regression methods with dependent variables measured on a nominal scale,
see Field (2013).

No variation can lead to epic fails! Consider the admission tests set by the
University of Liberia. Not a single student passed the entry exams. Clearly
in such situations, a regression analysis will make no difference!
http:// www. independent.co.uk/st udent/news /epic-fail-all-25000-student s-
fail-university-entrance-exam-in-liberia-8785707.html

Perfect collinearity may happen because you entered the same independent
variable twice, or because one variable is a linear combination of another (e.g.,
one variable is a multiple of another variable such as sales in units and sales in
thousands of units). If this occurs, regression analysis cannot estimate one of
the two coefficients and SPSS will automatically drop one of the independent
variables.

http://dx.doi.org/10.1007/978-3-642-53965-7_2
http://dx.doi.org/10.1007/978-3-642-53965-7_2
http://dx.doi.org/10.1007/978-3-642-53965-7_2
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
http://www.independent.co.uk/student/news/epic-fail-all-25000-students-fail-university-entrance-exam-in-liberia-8785707.html
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– The second option is to re-specify the regression model by removing highly
correlated variables. Which variables should you remove? If you create a
correlation matrix (see Chap. 5) of all the independent variables entered in the
regression model, you should focus first on the variables that are most strongly
correlated. Initially, try removing one of the two most strongly correlated
variables. Which one you should remove is a matter of taste and depends on
your analysis set-up.

To conduct a regression analysis, we need to select the variables we want to include
and decide on how the model is estimated. In the following, we will discuss each step
in detail.

In practice, however, weaker forms of collinearity are common. For example, if
we study how much customers are wiling to pay in a restaurant, satisfaction with
the waiter/waitress and satisfaction with the speed of service may be highly related.
If this is so, there is little uniqueness in each variable, since both provide much the
same information. The problem with having substantial collinearity is that it tends
to disguise significant parameters as insignificant.
Fortunately, collinearity is relatively easy to detect by calculating the
tolerance or VIF (Variance Inflation Factor). A tolerance of below 0.10
indicates that (multi) collinearity is a problem.4 The VIF is just the reciprocal
value of the tolerance. Thus, VIF values above ten indicate collinearity issues. We
can produce these statistics in SPSS by clicking on Collinearity diagnostics under
the Options button found in the main regression dialog box of SPSS.

Let’s first show the main regression dialog box in SPSS to provide some idea of what
we need to specify for a basic regression analysis. First open the dataset called

You can remedy collinearity in several ways. If perfect collinearity occurs, SPSS will
automatically delete one of the perfectly overlapping variables. SPSS indicates this
through an additional table in the output with the title “Excluded Variables”. If weaker
forms of collinearity occur, it is up to you to decide what to do.

– The first option is to use factor analysis (see Chap. 8). Using factor analysis, you
create a small number of factors that have most of the original variables’

information in them but which are mutually uncorrelated. For example, through
factor analysis you may find that satisfaction with the waiter/waitress and satis-
faction with the speed of service fall under a factor called service satisfaction. If
you use factors, collinearity between the original variables is no longer an issue.

7.3.2

7.3.2.1 Model Specification

Specify and Estimate the Regression Model

4The tolerance is calculated using a completely separate regression analysis. In this regression
analysis, the variable for which the tolerance is calculated is taken as a dependent variable and all
other independent variables are entered as independents. The R2 that results from this model is
deducted from 1, thus indicating how much is not explained by the regression model. If very
little is not explained by the other variables, (multi) collinearity is a problem.

http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_8
http://dx.doi.org/10.1007/978-3-642-53965-7_8
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The main regression dialog box in SPSS

Sales data.sav (8 Web Appendix ! Chap. 7). These data contain information on
supermarket sales per week in $ (sales), the (average) price level (price), and an index
of promotional activities (promotion), amongst other variables. After opening the
dataset, click on u Analyze u Regression u Linear. This opens a box similar to Fig. 7.3.

For a basic regression model, we need to specify the Dependent variable and
choose the Independent(s). As discussed before, the dependent variable is the
variable we care about as the outcome.
How do we select independent variables? Market researchers usually select
independent variables on the basis of what the client wants to know and on prior
research findings. For example, typical independent variables explaining the
super-market sales of a particular product include the price, promotional activities,
level of in-store advertising, the availability of special price promotions,
packaging type, and variables indicating the store and week. Market researchers
may, of course, select different independent variables for other applications. A
few practical suggestions to help you select variables:
– Never enter all the available variables at the same time. Carefully consider which
independent variables may be relevant. Irrelevant independent variables may be
significant due to chance (remember the discussion on hypothesis testing in Chap.
6) or can reduce the likelihood of determining relevant variables’ significance.

– If you have a large number of variables that overlap in terms of how they are defined,
such as satisfaction with the waiter/waitress and satisfaction with the speed of
service, try to pick the variable that is most distinct or relevant to the client.
Alternatively, you could conduct a factor analysis first and use the factor scores as
input for the regression analysis (factor analysis is discussed in Chap. 8).

http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_8
http://dx.doi.org/10.1007/978-3-642-53965-7_8
http://dx.doi.org/10.1007/978-3-642-53965-7_8
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as the dependent variable and
as independent variables.

Forward and backward methods are often used for data mining purposes. How
do these work? Starting with the constant (α) only, the forward method runs a
very large number of separate regression models. Then it tries to find the best
model by adding just one independent variable from the remaining variables.
Subsequently it compares the results between these two models. If adding an
independent variable produces a significantly better model, it proceeds by
adding a second variable from the variables that remain. The resulting model
(which includes the two independent variables) is then compared to the
previous model (which includes one independent variable). This process is
repeated until adding another variable does not improve the model significantly.
The backward method does something similar but initially enters all variables
that it may use and removes the least contributing independent variable until
removing another makes the model significantly worse.

as well as the

– Take the sample size rules of thumb into account. If practical issues limit the
sample size to below the threshold recommended by the rules of thumb, use as

Once we know which variables we want to include, we need to specify if all of
them should be used, or if – based on the significance of the findings – the ana-
lysis procedure can further select variables from this set. There are two general
options to select variables under Method in Fig. 7.3. Either you choose the
independent variables to be in the model yourself (the enter method) or you let a
process select the best subset of variables available to you (a stepwise method).
There are many different types of stepwise methods such as the forward and
backward methods, which we explain in Box 7.1.

few independent variables as possible. With larger sample sizes, you have more
freedom to add independent variables, although they still need to be relevant.

Choosing between the enter and stepwise methods means making a choice between
letting the researcher or a procedure choose the best independent variables. We
recommend using the enter method. Why? Because stepwise methods often result in
adding variables that are only significant “by chance,” rather than truly interesting or
useful. Another problem with forward and backward methods is related to how regression
deals with missing values. Regression can only estimate models when it has complete
information on all the variables. If a substantial number of missing values are present,
using backward or forward methods may result in adding variables that are only relevant
for a subset of the data for which

As an example, we use sales
index of promotional activities
7.3.2.2 Model Estimation

price

Box 7.1 Forward or backward methods
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A practical issue related to specifying and estimating the regression model is if we
conduct just one regression analysis, or if we run multiple models. Market
researchers typically run many different models. A standard approach is to start
with relatively simple models, such as with one, two, or three independent
variables. These independent variables should be those variables you believe are
the most important ones. You should start with just a few variables because adding
further variables may cause the already entered variables to lose significance. If
important decisions are made with a regres-sion model, we need to be aware that
sometimes variables that are significant in one model may no longer be significant if
we add (or remove) variables. As discussed earlier, this is often due to collinearity.
Once you have determined a number of key basic variables, you could (depending
on the research purpose) add further independent variables until you have a model
that satisfies your needs and does a good job of explaining the dependent variable.
Generally, regression models have between 3 and 10 independent variables but
bivariate regression models are also common. In specific applications, such as
regres-sion models that try to explain economic growth, regression models can
have dozens of independent variables.

complete information is present. If data are missing, backward or forward methods often
result in finding highly significant models that only use a small number of observations
from the total number of available observations. In this case, the regression model fits a
small set of the data well but not the entire data or population. Finally, as a market
researcher, you want to select variables that are meaningful for the decision-making
process. You also need to think about the actual research problem, rather than choosing
the variables that produce the “best model.” Does this mean that the forward and
backward methods are completely useless? Certainly not! Market researchers commonly
use stepwise methods to find their way around the data quickly and to develop a feel for
relationships in the data.

After deciding on the variable selection process, we need to choose an estimation
procedure. Estimation refers to how the “best line” we discussed earlier is calcu-lated.
SPSS estimates regression models by default, using ordinary least squares (OLS).
As indicated before, OLS estimates a regression line so that it minimizes the squared
differences between each observation and the regression line. By squaring distances,
OLS avoids negative and positive deviations from the regression line cancelling each
other out. Moreover, by squaring the distances, OLS also puts greater weight on
observations that are far away from the regression line. The sum of all these squared
distances is called the sum of squares and is indicated in

the SPSS output. While minimizing the sum of squares, OLS also ensures that the
mean of all errors is always zero. Because the error is zero on average, researchers
sometimes omit the e from the regression notation. Nevertheless, errors do occur in
respect of individual observations (but not on average). Figure 7.1
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OLS is a very robust estimator. However, there are alternatives that work better
and are best used in specific situations. Typically these situations occur if we
violate on of the regression assumptions. For example, if the regression
residuals are heteroskedastic, we need to use alternative procedures such as
weighted least squares (WLS). We briefly discuss when WLS should be used in
this chapter. If the expected mean error of the regression model is not zero,
estimators such as two-staged least squares (2SLS) can be used in specific
situations. If the errors are not independent, estimators such as random-effects
estimators may be used. Such estimators are beyond the scope of this book.
Greene’s (2007) work discusses these, and other estimation procedures in
detail.

We have already discussed several issues that determine if it is useful to run a
regression analysis. We now turn to discussing the assumptions of regression
analysis. If a regression analysis fails to meet the assumptions, regression analysis
can provide invalid results. Four regression analysis assumptions are required to
provide valid results:

1. The regression model can be expressed in a linear way,
2. The expected mean error of the regression model is zero,
3. The variance of the errors is constant (homoskedasticity), and
4. The errors are independent (no autocorrelation).

The fifth assumption is optional. If we meet this assumption, we have informa-
tion on how the regression parameters are distributed, thus allowing
straightforward conclusions on their significance. If we fail to meet this
assumption, the regression model will still be accurate but it becomes more
difficult to determine the regression parameters’ significance.

5. The errors need to be approximately normally distributed.
We next discuss these assumptions and how we can test each of them.

illustrates this. Almost all observations fall above or below the regression line.
However, if we calculate the mean of all the squared distances of regression points
above and below the line, the result is exactly zero. In Box 7.2 we discuss estima- tion
methods other than OLS.

7.3.3 Test the Assumptions of Regression Analysis

Box 7.2 Different problems, different estimators



204
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Different relationships between promotional activities and weekly sales

7.3.3.1 First Assumption: Linearity
The first assumption

α β
y¼ þ 
hand,expressionssuchas 

1x1þe.Thus, 2
x1

means that we can write the regression model as
relationships such as β 2x are not permissible. On the oth

1 1

orlog(x1)arepossibleastheregressionmodelisstill
specified in a linear way. As long as you can write a model where the regression
parameters (the βs) are linear, you satisfy this assumption. A separate issue is if
the relationship between an independent variable x and the dependent variable y,
is linear. Checking the linearity between x and y variables can be done by plotting
the independent variables against the dependent variable. Using a scatter plot, we
can then assess whether there is some type of non-linear pattern. Figure 7.4 shows
such a plot. The straight line indicates a linear relationship. For illustration
purposes, we have also added an upward sloping and downward sloping line. The
upward sloping line corresponds to an x12 transformation, while the downward
sloping line corresponds to a log(x1) transformation. For this particular data, it
appears however that a linear line fits the data best. It is important to correctly
specify the relation-ship, because if we specify a relationship as linear when it is
in fact non-linear, the regression analysis results do not fit the data in the best
possible way. After transforming x1 by squaring it or taking the log, you still
satisfy the assumption of specifying the regression model in a linear way, despite
that the relationship between x and y is nonlinear.

7.3.3.2 Second Assumption: Expected Mean Error is Zero
The second assumption is that the expected (not the estimated!) mean error is zero. If we
do not expect the sum of the errors to be zero, we obtain a line that is biased. That
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If you think heteroskedasticity is an issue, SPSS can deal with it by using weighted least
squares (WLS). Simply use the variable that you think causes the error variance not to be
constant (e.g., store size) and “weight” the results by this variable. In Fig. 7.3 you see a
box labelled WLS Weight at the bottom to which you can add the variable that causes the
increase in error variance. Only use WLS if

is, we have a line that consistently over- or under-estimates the true relationship. This
assumption is not testable by means of statistics, as OLS always renders a best line where
the mean error is exactly zero. If this assumption is challenged, this is done on theoretical
grounds. Imagine that we want to explain the weekly sales in $ of all US supermarkets. If
we were to collect our data only in downtown areas, we would mostly sample smaller
supermarkets. Thus, a regression model fitted using the available data would differ from
those models obtained if we were to include all supermarkets. Our error in the regression
model (estimated as zero) therefore differs from the population as a whole (where the
estimate should be truly zero). Further-more, omitting important independent variables
could cause the expected mean not to be zero. Simply put, if we
were to omit a relevant variable x2 from a regression model that only includes x1, we
induce a bias in the regression model. More precisely, β1 is likely to be inflated, which
means that the estimated value is higher than it should actually be. Thus, β1 itself is
biased because we omit x2!
7.3.3.3 Third Assumption: Homoskedasticity
The third assumption is that the errors’ variance is constant, a situation we call
homoskedasticity. Imagine that we want to explain the weekly sales of various
supermarkets in $. Clearly, large stores have a much larger spread in sales than small
supermarkets. For example, if you have average weekly sales of $50,000, you might see a
sudden jump to $60,000 or a fall to $40,000. However, a very large supermarket could
see sales move from an average of $5,000,000–$7,000,000. This issue causes weekly
sales’ error variance to be much larger for large supermarkets than for small
supermarkets. We call this non-constant variance heteroskedasticity. We visualize the
increasing error variance of supermarket sales in Fig. 7.5, in which we can see that the
errors increase as weekly sales increase.

If we estimate regression models on data in which the variance is not constant, they
will still result in errors that are zero on average (i.e., our predictions are still correct),
but this may cause some βs not to be significant, whereas, in reality, they are.
Unfortunately, there is no easy (menu-driven) way to test for heteroskedasticity in
SPSS. Thus, understanding whether heteroskedasticity is present, is (if you use the
SPSS menu functions) only possible on theoretical grounds and by creating graphs. On
theoretical grounds, try to understand whether it is likely that the errors increase as
the value of the dependent variable increases or decreases. If you want to visualize
heteroskedasticity, it is best to plot the errors against the dependent variable, as in
Fig. 7.5. As the dependent variable increases or decreases, the variance should
appear as constant. If heteroskedasticity is an issue, the points are often funnel
shaped, becoming more, or less, spread out across the graph. This funnel shape is
typical of heteroskedasticity and indicates increasing variance across the errors.
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Large error
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Small error
variance

An example of heteroskedasticity

heteroskedasticity is a real concern. If WLS is used, and heteroskedasticity is no
problem, or the weight variable has not been chosen correctly, the regression results
may be invalid.

7.3.3.4 Fourth Assumption: No Autocorrelation
The fourth assumption is that the regression model errors are independent; that is, the
error terms are uncorrelated for any two observations. Imagine that you want to explain
the sales of a particular supermarket using that supermarket’s previous week sales. It is
very likely that if sales increased last week, they will also increase this week. This may be
due to, for example, a growing economy, or other reasons that underlie supermarket sales
growth. This issue is called autocorrelation and means that regression errors are correlated
positively, or negatively, over time. Fortunately, we
can identify this issue using the Durbin–Watson test. The Durbin– Watson test
assesses whether there is autocorrelation by testing a null hypothesis of no
autocorrelation, which is tested against a lower and upper bound for negative
autocorrelation and against a lower and upper bound for postive autocorrelation. Thus
there are four critical values. If we reject the null hypothesis of no autocorre-lation, we
find support for an alternative hypothesis that there is some degree of autocorrelation.
To carry out this test, first sort the data on the variable that indicates the time
dimension in your data, if you have this included in your data. Otherwise, the test
should not be carried out. With time dimension, we mean that you have at least two
observations collected from a single respondent or object at different points in time.
Do this by going to u Data u Sort Cases. Then enter your time variable under Sort by:
and click on OK. To carry out the actual test, you need to check Durbin–Watson under
the Statistics option of the main regression dialog box in SPSS. SPSS calculates a
Durbin–Watson statistic, but does not indicate if the
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The critical values can be found on the website accompanying this book (8 Web Appendix !
Chap. 7). From this table, you can see that the lower critical value of a model with five
independent variables and 200 observations is 1.718 and the upper critical value is 1.820.
Figure 7.6 shows the intervals for the above example and if the Durbin–Watson test
concludes that there is no autocorrelation, you can proceed with the regression model. If
the Durbin–Watson test indicates autocorrelation, you may have to use models that
account for this problem, such as panel and time-series

test is significant or not. This requires comparing the calculated Durbin–Watson value with
the critical Durbin–Watson value. These Durbin–Watson values lie between 0 and 4.
Essentially, there are four situations. First, the errors may be positively related (called
positive autocorrelation). This means that if we take observations ordered according to
time, we observe that positive errors are typically followed by positive errors and that
negative errors are typically followed by negative errors. For example, supermarket sales
usually increase over certain periods in time (e.g., before Christmas) and decrease in other
periods (e.g., the summer holidays). Second, if positive errors are commonly followed by
negative errors and vice-versa, we have negative autocorrelation. Negative autocorrelation
is less common than positive autocorrelation, but also occurs. If we study, for example,
how much time salespeople spend on shoppers, we may see that if they spend much time
on one shopper, they spend less time on the next, allowing the salesperson to stick to
his/her schedule or simply go home on time. Third, if no systematic pattern of errors
occurs, we have no autocorrelation. Fourthly, the Durbin-Watson values may fall in
between the lower and upper critical value. In this case, the test is inconclusive. We
indicate these four situations in Fig. 7.6. Which situation occurs, depends on the interplay
between the
Durbin-Watson test statistic (d) and the lower (dL) and upper (dU) critical value.

– If the test statistic is lower than the lower critical value (d < dL) we have positive

dL=1.718

autocorrelation

Durbin-Watson test values (

dU=1.820

autocorrelation

200, k ¼ 5)

4-dU=2.180

autocorrelation.
– If the test statistic is higher than 4 minus the lower critical value (d > 4-dL) we

have negative autocorrelation
– If the test statistic falls between the upper critical value and 4 minus the upper

critical value (dU < d < 4-dU) we have no autocorrelation.
– If the test statistic falls in-between the lower and upper critical value (dl < d <
dU) or it falls in-between 4 minus the upper critical value and 4 minus the
lower critical value (4-dU < d < 4-dL) we cannot make a decision on the
presence of autocorrelation.

4-dL=2.282

autocorrelation
Positive No NegativeIndecision Indecision

Fig. 7.6 n ¼

http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
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models. We do not discuss these in this book, but a useful source of further
information is Hill et al. (2008).

The fifth, optional, assumption is that the regression model errors are approximately
normally distributed. If this is not the case, the t-values may be incorrect. However,
even if the errors of the regression model are not normally distributed, the regres-sion
model still provides good estimates of the coefficients. Therefore, we consider this
assumption as optional. Potential reasons for non- normality include outliers
(discussed in Chap. 5) and a non-linear relationship between an independent and a
dependent variable.
There are two main ways of checking for normally distributed errors, either
you use plots or you can perform a formal test. The plots are easily explained and
interpreted and may suggest the source of non-normality (if present). The formal
test may indicate non-normality and provide absolute standards. However, the
formal test results reveal little about the source of non-normality.

7.3.3.5 Fifth (Optional) Assumption: Error Distribution

To test for non-normality using plots, first save the unstandardized errors by going
to the Save dialog box in the regression menu. Then, create a histogram of these errors
and plot a normal curve in it to understand if any deviations from normality are present.
We can make histograms by going to u Graphs u Legacy Dialogs u Histogram. Make
sure to check Display normal curve. The result may look something like Fig. 7.7. How
do we interpret this figure? If we want the errors to be approximately normally
distributed, the bars should end very “close” to the normal curve, which is the black
bell-shaped curve. What “close” means exactly is

Histogram of the
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http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5


Table 7.1

7.3 Conducting a Regression Analysis 209

open to different interpretations, but Fig. 7.7 suggests that the errors produced by
the estimated regression model are almost normally distributed.

We can assess the overall model fit using the (adjusted) R2 and significance of the
F-value.
The R2 (or coefficient of determination) indicates the degree to which the
model explains the observed variation in the dependent variable, relative to the
mean. In Fig. 7.8, we explain this graphically with a scatter plot. The y-axis relates
to the dependent variable (weekly sales in $) and the x-axis to the independent
variable (price). In the scatter plot, we see 30 observations of sales and price (note
that we use a small sample size for illustration purposes). The horizontal line (at
about $5,000 sales per week) refers to the average sales of all 30 observations.
This is also our benchmark. After all, if we were to have no regression line, our
best estimate of the weekly sales is also the average. The sum of all squared
differences between each observation and the average is the total variation or total
sum of the squares (usually referred to as SST). We indicate the total variation for
only one observation on the right of the scatter plot.

The upward sloping line (starting at the y-axis at about $2,500 sales per week
when there are no promotional activities) is the regression line that is estimated

In the previous sections, we discussed how to specify a basic regression model and how
to test regression assumptions. We now turn to discussing the fit of the regression model,
followed by the interpretation of the effects of individual variables.

In addition to the normal curve, SPSS produces a table, showing the results of two formal
tests of normality (i.e., Kolmogorov-Smirnov and Shapiro-Wilk). Since we have only 30
observations in our dataset, we should use the Shapiro–Wilk test (see Chap. 6) as a formal
test of normality. As we can easily see, the Shapiro–Wilk test result indicates that the
errors are normally distributed as we cannot reject the null hypothesis at a significance
level of 5% (p-value ¼ 0.084) (Table 7.1).

7.3.4 Interpret the Regression Results

Output produced by the Shapiro–Wilk test

Tests of Normality

UnstandardizedResidual .131 30

a. Lilliefors Significance Correction
*. This is a lower bound of the true significance.

.200*

Kolmogorov-Smirnova

Statistic df Sig.

.939 30

Shapiro-Wilk

Statistic df

.084

Sig.

7.3.4.1 Overall Model Fit

http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
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Explanation of the R2

using OLS. If we want to understand what the regression model adds beyond the average
(the benchmark), we can calculate the difference between the regression line and the
average. We call this the regression sum of the squares (usually abbreviated
SSR) as it is the variation in the data that is explained by the regression analysis. The
final point we need to understand regarding how well a regression line fits the
available data, is the unexplained sum of squares. This refers to the regression error
that we discussed previously and which is consequently denoted as SSE. In more
formal terms, we can describe these types of variation as follows:

i1
¼

i1

SST ¼ SSR þ SSE

This is the same as:

Here, n describes the number of observations, yi is the value of the independent
variable for observation i, y^i is the predicted value of observation i and y is the
mean value of y. As you can see, this description is very similar to the one-way
ANOVA, discussed in Chap. 6. A good regression line should explain a substantial
amount of variation (have a high SSR) relative to the total variation (SST). This is the
R2 and we can calculate this as:

¼

n n
X y X X

i1 i yÞ2¼ ðy^i yÞ2þ
n

ð y i
¼

y^ iÞ 2

http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
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R2 SSR
SST¼

It is difficult to provide rules of thumb regarding what R2 is appropriate, as this
varies from research area to research area. For example, in longitudinal
studies R2s of 0.90 and higher are common. In cross-sectional designs,
values of around 0.30 are common while for exploratory research, using
cross-sectional data, values of 0.10 are typical. In scholarly research that
focuses on marketing issues, R2 values of 0.75, 0.50, or 0.25 can, as a rough
rule of thumb, be respectively described as substantial, moderate, or weak.

To avoid a bias towards complex models, we can use the adjusted R2 to select
regression models. The adjusted R2 only increases if the addition of another
independent variable explains a substantial amount of variance. We calculate the
adjusted R2 as follows:

AdjustedR2 11R2 ðn
k

1Þ
1¼  Þ n

Here, n describes the number of observations and k the number of independent
variables (not counting the constant α). This adjusted R2 is a relative measure and
should be used to compare different regression models with the same dependent
variable. You should pick the model with the highest adjusted R2 when comparing
regression models.
However, do not blindly use the adjusted R2 as a guide, but also look at each
individual variable and see if it is relevant (practically) for the problem you are
researching. Furthermore, it is important to note that we cannot interpret the

The R2 always lies between 0 and 1, where a higher R2 indicates a better model
fit. When interpreting the R2, higher values indicate that more of the variation in y
is explained by variation in x, and therefore that the SSE is low relative to the SSR.

If we use the R2 to compare different regression models (but with the same dependent
variable), we run into problems. If we add irrelevant variables that are
slightly correlated with the dependent variable, the R2 will increase. Thus, if we use
the R2 as the only basis for understanding regression model fit, we are biased towards
selecting regression models with many independent variables. Selecting a model only
based on the R2 is plainly not a good strategy, as we want regression models that do a
good job of explaining the data (thus a low SSE), but which also have few independent
variables (these are called parsimonious models). We do not want too many
independent variables because this makes using the regression model more difficult. It
is easier to recommend that management changes a few key variables to improve an
outcome than to recommend a long list of somewhat related variables. Of course,
relevant variables should always be included. To quote Albert Einstein: “Everything
should be made as simple as possible, but not simpler!”
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To be precise, the null and alternative hypotheses tested for an individual
parameter (e.g., β1) are:

adjusted R2 as the percentage of explained variance in the sample used for regres-
sion analysis. The adjusted R2 is only a measure of how much the model explains
while controlling for model complexity.
Besides the (adjusted) R2, the F-test is an important determinant of model fit.
The test statistic’s F-value is the result of a one-way ANOVA (see Chap. 6) that
tests the null hypothesis that all regression coefficients together are equal to zero.
Thus, the following null hypothesis is tested:

H0:β1¼β2¼β3¼...¼0

The alternative hypothesis is that at least one β differs from zero. If the
regression coefficients were all equal to zero, then the effect of all the independent
variables on the dependent variable is zero. In other words, there is no (zero)
relationship between the dependent variable and the independent variables. If we
do not reject the null hypothesis, we need to change the regression model or, if
this is not possible, report that the regression model is insignificant.
The test statistic’s F-value closely resembles the F-statistic, as discussed in
Chap. 6 and is also directly related to the R2 we discussed previously. We can
calculate the F-value as follows:

SS
F R=K R2 ðn k1Þk

SS
¼ E=ðnk1Þ ¼ 1 R2 

The test statistic follows an F-distribution with k and (n – k – 1) degrees of
freedom. Finding that the p-value of the F-test is below 0.05 (i.e., a significant
model), does not, however, automatically mean that all of our regression
coefficients are significant or even that one of them is significant, when
considered in isolation. However, if the F-value is significant, it is highly likely
that at least one or more regression coefficients are significant.
When we interpret the model fit, the F-test is the most critical, as it determines if the overall
model is significant. If the model is insignificant, we do not interpret the model further. If the
model is significant, we proceed by interpreting individual variables.

7.3.4.2 Effects of Individual Variables
After having established that the overall model is significant and that the R2 is
satisfactory, we need to interpret the effects of the various independent variables used
to explain the dependent variable. First, we need to look at the t-values reported for
each individual parameter. These t-values are similar to those discussed in Chap. 6 in
the context of hypothesis testing. If a regression coefficient’s p-value (indicated in
SPSS by the column headed by Sig.) is below 0.05, we generally say that that
particular independent variable relates significantly to the dependent variable.

http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
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H0

H1

0

0

While the standardized βs are helpful from a practical point of view, there are two
issues. First, standardized βs allow comparing the coefficients only within and not
between models! Even if you add just a single variable to your regression model,
standardized βs may change substantially. Second, standardized βs are not
meaningful when the independent variable is binary.

While this is a very simple example, we might run a multiple regression in which the
independent variables are measured on different scales, such as in $, units sold, or on
Likert scales. Consequently, the independent variables’ effects cannot be directly
compared with one another as their influence also depends on the type of scale used.
Comparing the (unstandardized) β coefficients would in any case amount to
comparing apples with oranges!

:β1¼

:β1¼6

Fortunately, the standardized βs allow us to compare the relative effect of differently
measured independent variables. This is achieved by expressing β as standard deviations
with a mean of zero. The standardized βs coefficient expresses the effect of a single
standardized deviation change of the independent variable on the dependent variable. All
we need to do is to look at the highest absolute value. This value indicates which variable
has the strongest effect on the dependent variable. The second highest absolute value
indicates the second strongest effect, etc. Only consider the significant βs in this respect,
as insignificant βs do not (statistically) differ from zero! Practically, the standardized β is
important, because it allows us to ask questions on what, for example, the relative effect
of promotional activities is relative to decreasing prices. It can therefore guide
management decisions.

If a coefficient is significant (meaning we reject the null hypothesis), we also need to look
at the unstandardized and standardized β coefficients. The unstandard-ized β coefficient
indicates the effect of a 1-unit increase in the independent variable (on the scale in which
the original independent variable is measured) on the dependent variable. Thus it is the
partial relationship between a single independent variable and the dependent variable. At
the very beginning of this chapter, we learned that there is a positive relationship between
promotional activities and the weekly sales in $ with a
β1 coefficient of 55.968. This means that if we increase promotional activities by one
unit, weekly sales are expected to go up by $55.968. In other variables, the effect could
of course be negative (e.g., increasing prices reduces sales). Importantly, if we have
multiple independent variables, the unstan-dardized β1 coefficient is the effect of an
increase of that independent variable by one unit, keeping the other independent
variables constant.
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When interpreting (standardized) β coefficients, you should always keep the
effect size in mind. If a β coefficient is significant, it indicates merely an effect
that differs from zero. This does not necessarily mean that the effect is
managerially relevant. For example, we may find a $0.01 sales effect of
spending $1 more on promotional activities that is statistically significant.
Statistically, we could conclude that the effect of a $1 increase in promotional
activities increases sales by an average of $0.01 (just one dollar cent). While
this effect differs significantly from zero, in practice we would probably not
recommend increasing promotional activities (we would lose
money at the margin) as the effect size is just too small.5

The discussion on the effects of individual variables assumes that there is only
one effect. That is, there is only one β parameter that represents all
observations well. Often, this is not true. For example, the link between
customer satisfaction and loyalty has been shown to be stronger for people with
low income than for people with high income. In other words, there is
heterogeneity in the effect between satisfaction and loyalty.
Moderation analysis is one way to test if such heterogeneity is present.
A moderator variable, usually denoted with m, is a variable that changes the
strength (or even direction) of the relationship between the independent
variable (x) and the dependent variable (y). This moderation variable is
frequently called an interaction variable. The moderating variable can
weaken or strengthen the effect of x on y. Potentially, the m variable could
even reverse the effect of x on y.
Moderation is easy to test if the moderator variable m is binary, ordinal, or
interval scaled. All that is required is to create a new variable that is the
multiplication of x m. This can be done in SPSS using u Transform u Compute.
The regression model then takes the following form:

y¼αþβxþβmþβx mþe

In words, conducting a moderator analysis requires entering the independent
variable x, the moderator variable m and the product x·m. After estimating this

There are also situations in which an effect is not constant for all observations but
depends on the values of another variable. To disclose such effects, researchers can
run a moderation analysis, which we discuss in Box 7.3.

Box 7.3 Moderation

(continued)

5An interesting perspective on significance and effect sizes is offered by Cohen’s (1994)
classical article “The Earth is Round (p <.05).
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Box 7.3 (continued)
regression model, you can interpret the significance and sign of the β3
parameter. A significant effect suggests that:
– The effect of x increases as m increases (when the sign of β3 is positive),
– The effect of x decreases as m increases (when the sign of β3 is negative).

Finding a significant moderator effect suggests heterogeneity in the effect
of x on y, where the effect of x of y may increase as m increases or may
decrease as m decreases.

After we have checked for the assumptions of regression analysis and interpreted
the results, we need to check for the stability of the regression model. Stability
means that the results are stable over time, do not vary across different situations,
and do not depend heavily on the model’s specification. We can check for the
stability of a regression model in several ways.
1. We could validate the regression results by splitting our data into two parts
(called split-sample validation) and run the regression model again on each
subset of data. 70% of the randomly chosen data are often used to estimate the
regression model and the remaining 30% are used for comparison purposes.
We can only split the data if the remaining 30% still meets the sample size
rules of thumb discussed earlier. If the use of the two samples results in similar
effects, we can conclude that the model is stable.

2. We can also cross-validate our findings on a new dataset and see if those findings
are similar to the original findings. Again, similarity in the findings indicates stability
and that our regression model is properly specified. This, naturally, assumes that we
have a second dataset.

For a further discussion on moderation analyses, please see David Kenny’s
discussion on moderation (http://www.davidakenny.net/cm/moderation.htm) or the
advanced discussion of Aiken and West (1991). Jeremy Dawson’s website
(http://www.jeremydawson.co.uk/slopes.htm) offers a tool to visualize moderation
effects. An example of a moderation analysis is for example found in (Mooi and
Frambach 2009).

3. We could add a number of alternative variables to the model. But we would need to
have more variables available than included in the regression model to do so. For
example, if we try to explain weekly supermarket sales, we could use a number of “key”
variables (e.g., the breadth of the assortment or downtown/non-downtown location) in our
regression model to help us. Once we have a suitable regression model, we could use
these variables. If the basic findings of, for example, promotional activities are the same
for stores with a differing assort-ment width or store location (i.e., the assortment width
and location are not

7.3.5 Validate the Regression Model

http://www.davidakenny.net/cm/moderation.htm
http://www.davidakenny.net/cm/moderation.htm
http://www.davidakenny.net/cm/moderation.htm
http://www.jeremydawson.co.uk/slopes.htm
http://www.jeremydawson.co.uk/slopes.htm
http://www.jeremydawson.co.uk/slopes.htm
http://www.jeremydawson.co.uk/slopes.htm
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significant), we conclude that the effects are stable. However, it might also be
the opposite, but whatever the case, we want to know.
Note that not all regression models need to be identical when you try to validate the
results. The signs of the individual parameters should at least be consistent and
significant variables should remain so, except if they are marginally significant, in
which case changes are expected (e.g., p ¼ 0.045 becomes p ¼ 0.051).

We can also use these coefficients to make predictions of sales in different situations.
Imagine, for example, that we have set the price at $1.10 and promo- tional activities
at 50. Our expectation of the weekly sales would then be:

y^¼29,011.585-24,003.037 $1.10þ44.227 50promotionalactivities
¼ $4,819.594 sales per week.

When we have found a useful regression model that satisfies the assumptions of
regression analysis, it is time to use the regression model. A key use of regression
models is prediction. Essentially, prediction entails calculating the values of the
dependent variable based on assumed values of the independent variables and their
related but previously calculated unstandardized β coefficients. Let us illustrate this
by returning to our opening example. Imagine that we are trying to predict weekly
supermarket sales (in $) (y) and have estimated a regression model
with two independent variables: the average price (x1) and an index of
promotional activities (x2). The regression model for this is as follows:

y¼αþβ1x1þβ2x2þe

If we estimate this model on a dataset, the estimated coefficients using
regression analysis could be similar to those in Table 7.2.

7.3.6 Use the Regression Model

Table containing sample regression coefficientsa

Coe ff icie nt s a

Unstandardized Coefficients

Model B Std.Error

1 (Constant) 

Priceofproduct 

Indexofpromotional 
activit ies

29011.585

–24003.037

44.227 

18448.456

16694.676

13.567

a. Dependent Variable: Weekly sales in USD

– .241

.547

S tand ar dize d
Coe fficien ts

Beta t

1.57 3

–1.4 38

3.26 0

Sig.

.127

.162

.003



Specifying and estimating the
regression model
Select variables based on theory or
based on strength of effects

Testing the assumptions of regression
analysis
Is the relationship between the
independent and dependent
variables linear?
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We could also build several scenarios to plan for different situations, by, for example,
increasing the price to $1.20 and reducing promotional activities to 40. Regression
models can be used like this to, for example, automate stocking and logistical
planning or develop strategic marketing plans.
Another way in which regression can help is by providing insight into
variables’ specific effects. For example, if the effect of price is not significant, it
may tell managers that the supermarket’s sales are relatively insensitive to pricing
decisions. Alternatively, the strength of promotional activities’ effect may help
managers understand whether promotional activities are useful.
Table 7.3 summarizes (on the left side) the major theoretical decisions we need to make if
we want to run a regression model. On the right side, these decisions are then
“translated” into SPSS actions, which are related to these theoretical decisions.

Preferably use the enter method. If stepwise methods
are used (such as the forward method), only add
variables that could have a relationship with the
dependent variable.

Table 7.3 Key steps involved in carrying out a regression analysis

Theory 
Issues with regression analysis
Isthesamplesizesufficient? 

ExecutioninSPSS

Conductapoweranalysis.Alternatively,checkif
sample size is 104 þ k, where k indicates the number
of independent variables.
Calculatethestandarddeviationofthevariablesby
goingtouAnalyzeuDescriptiveStatisticsu
Descriptives u Options (check Std. Deviation). At the
very least, the standard deviation should be a positive
value. UseChap.2todeterminethemeasurementlevel.

Dothedependentandindependent 
variablesshowvariation? 

Isthedependentvariableintervalor 
ratio scaled?
Is(multi)collinearitypresent? CheckfortoleranceandVIF.DothiswithuAnalyze

u Regression u Linear u Statistics (check
Collinearity diagnostics). The tolerance should be
above 0.10. The VIF should be below 10.

Consider whether you can write the regression model
asy¼αþβ1x1þ...þβkxkþe.
To understand if the independent variables are
linearly related to the dependent variable, plot the y
variables separately against the dependent variable of
(continued)

http://dx.doi.org/10.1007/978-3-642-53965-7_2
http://dx.doi.org/10.1007/978-3-642-53965-7_2
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Interpret the regression model

Consider the overall model fit.
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(continued)

Are the errors correlated
(autocorrelation)?

Are the errors normally distributed?

Consider the effects of the independent
variables separately.
Validate the model
Are the results robust?

Is the expected mean error of the
regression model zero?
Are the errors constant (homoskedastic)?

Execution in SPSS the regression model. Create scatter
plots using u
Graphs u Legacy Dialogs u Scatter/Dot (choose
Simple Scatter). If you see a non-linear pattern
showing up, non-linearity is an issue. To specify a
different relationship, see the transform variables
section in Chap. 5.
No actions in SPSS. Choice made on theoretical
grounds.
Plot the residual of the regression model on the y-

axis
and the dependent variable on the x-axis, using a
scatter plot under u Graphs u Legacy Dialogs u
Scatter/Dot (choose Simple Scatter). If you see that
the errors in/decrease as the dependent variable
increases, the variance of the errors is not constant.
You can use WLS to remedy this.
First assess if there is a time component to the data
(i.e., multiple observations, across time, from one
respondent/object). If there is, sort the data according
to the time variable and conduct the Durbin–Watson
test. Compare the calculated Durbin–Watson test
statistic with the critical lower and upper values. If
positive or negative autocorrelation is present, panel or
time-series models need to be used:
u Analyze u Regression u Linear u Statistics and
check the Durbin–Watson box.
Create a histogram of the errors with a standard
normal curve in it: u Graphs u Legacy Dialogs u
Histogram and enter the saved errors. Also check
Display normal curve.
Calculate the Kolmogorov-Smirnov test (for n 50)
or Shapiro–Wilk test (for n < 50). u Analyze u
Descriptive Statistics u Explore u Plots and check the
Normality plots with tests box.
Check the R2 and significance of the F-value. For
model comparisons, use the adjusted R2.
Check the (standardized) β. Also check the sign of the
β. Consider significance of the t-value.

Split the file into subsets or run the regression model
against another sample to check for robustness. Add
additional variables that may be useful and check if a
similar regression model results.

http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
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7.4

7.4.1

Example

The data includes 1,640 responses from customers, but due to item non-
response, the actual number of responses for each variable is lower.

First we need to check if our sample size is sufficient. By calculating descriptive
statistics (u Analyze u Descriptive Statistics u Descriptives; see Chap. 5) of the four
above mentioned variables we can see that we have 1,640 valid listwise observations.
This means that we have complete information for 1,640 observations. This is far
above the minimum sample sizes as recommended by Green (1991). The sampling
process has been documented by Fornell, Johnson, Anderson, Cha, and Bryant (1996)
and we assume this is done correctly. Looking at the dependent and independent
variables’ variance, we can also see that all variables show variation. Finally, as our
dependent variable is also ratio scaled, we can proceed with regression analysis.
Multicollinearity might be an issue, but

In the example, we take a closer look at the American Customer Satisfaction Index
(ACSI Data.sav, 8 Web Appendix ! Chap. 7). Every year, the American Cus- tomer
Satisfaction Index (ACSI) surveys about 80,000 Americans about their level of
satisfaction with a number of products and services. These satisfaction scores are
used to benchmark competitors and to rate industries. For example, towards the
beginning of 2014, the Quaker (PepsiCo), the H.J. Heinz Company, and General Mills
were rated as the three food manufacturers with the highest scores. If you go to
http://www.theacsi.org, you will find the current scores for various
industries.6 The ACSI data contain several variables, but we only focus on the
following (variable names in parentheses):
– Overall Customer Satisfaction (lvsat) is measured by statements put to

consumers about their overall satisfaction, expectancy disconfirmation (degree
to which performance falls short of, or exceeds, expectations) and performance
versus the customer’s ideal product or service in the category.

– Customer Expectations (lvexpect) is measured by statements put to
consumers about their overall expectations of quality (prior to purchase), their
expectation regarding to how well the product fits the customer’s personal
requirements (prior to purchase), and expectation regarding reliability, or how
often things will go wrong (prior to purchase).

– Perceived Value (lvvalue) is the consumers’ rating of quality given price, and
price given quality.

– Customer Complaints (lvcomp) captures whether or not the customer has
complained formally or informally about the product or service (1 ¼ yes, 0 ¼ no).

Consider Data Requirements for Regression Analysis

6For an application of the ACSI, see, for example, Ringle et al. (2010).

http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://www.theacsi.org/
http://www.theacsi.org/
http://www.theacsi.org/
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Fig. 7.9
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remove any of the variables on statistical grounds (as opposed to the stepwise
methods). Under Statistics in the main regression dialog box (see Fig. 7.10), SPSS
offers several options on the output that you may want to see. The Estimates and
Model fit options are checked by default and are essential. The Confidence intervals
and Covariance matrix options are not necessary for standard analysis

SPSS provides us with a number of options. Under Method choose Enter. The
enter option includes all variables added into the Independent(s) box and does not

we can only check this thoroughly after running a regression analysis. We will
therefore discuss this aspect later.

7.4.2 Specify and Estimate the Regression Model in SPSS

Although it is useful to know who comes out on top, from a marketing perspective, it is
more useful to know how organizations can increase their satisfaction. We can use
regression for this and explain how a number of independent variables relate to
satisfaction. Simply click on u Analyze u Regression u Linear and then enter Overall
Customer Satisfaction into the Dependent box and Customer Expectations,
Perceived Value, and Customer Complaints into the Independent(s) box. Figure 7.9 shows
the regression dialog box in SPSS.

The Linear Regression dialog box
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The statistics dialog box

purposes, so we skip these. The R squared change option is only useful if you select
any of the stepwise methods but is irrelevant if you use the (recommended) enter
option. The Descriptives option does what it says and provides the mean, standard
deviation, and number of observations for the dependent and independent variables.
The Part and partial correlations option produces a correlation matrix, while the
Collinearity diagnostics option checks for (multi)collinearity. The Durbin–Watson
option checks for autocorrelation, while Casewise diagnostics provides outlier
diagnostics. In this case, there is no time component to our data and thus the Durbin–
Watson test is not applicable.

Next, make sure the Estimates, Model fit, Descriptives, Collinearity diagnostics,
and Casewise diagnostic options are checked. Then click on Con-tinue. In the
main regression dialog box, click on Save. This displays a dialog box similar to
Fig. 7.11. Here, you can save predicted values and residuals.
Check the boxes Unstandardized under Predicted Values and Residuals. After clicking on
Continue in the Linear Regression: Save dialog box and OK in the Linear Regression dialog
box, SPSS runs a regression analysis and saves the residuals as a new variable in your
dataset. We will discuss all the output in detail below.
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Fig. 7.11
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The Save options for regression analysis

7.4.3 Test the Assumptions of Regression Analysis Using SPSS

To test the assumptions, we need to run three separate analyses.
The first assumption, the regression model can be expressed in a linear way, is
implied if you can write the regression model linearly as y ¼ α þ β1x1 þ β2x2 þ
β3x3 þ e. This is easy to do! While not needed, we also check for linearity of the
relationships between the independent and dependent variables. If we create a
scatter plot of Overall Customer Satisfaction against Customer Expectations,
SPSS produces Fig. 7.12. This plot seems to suggest a linear relationship between
the two variables. For a full analysis, we should plot every separate independent
variable against the dependent variable. Try this yourself and you will see that the
other independent variables are also linearly related to Overall Customer Satis-
faction. Note that Perceived Value includes a clear outlier but with or without
this outlier the relationship is still linear. Also note that if we include variables that
take on only few different values, such as Customer Complaints (values of 0 and
1), we cannot use graphs to see if these relationships are linear.
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Overall customer
satisfaction against customer
expectations

7You can download the reduced dataset
Appendix (Chap. 7)

in the 8 Web

If we delete a case from the initial dataset, we have to re-run the model. When
doing so, we have to re-consider the assumptions we just discussed based on the
newly estimated unstandardized residuals. However, we refrain from displaying
the results twice – just try it yourself! Let’s instead continue by discussing the
remaining two (partly optional) assumptions using the dataset without the outlier.7

Next, we have to check if the regression model’s expected mean error is zero (second
assumption). Remember, this choice is made on theoretical grounds. We have a
randomly drawn sample from the population and the model is similar in specification
to other models explaining customer satisfaction. This makes it highly likely that the
regression model’s expected mean error is zero.
The third assumption is that of homoskedasticity. To test for this, we plot the
errors against the dependent variable. Do this by going to u Graphs u Legacy
Dialogs u Scatter/Dot (choose Simple Scatter). Enter the Overall Customer
Satis-faction to the Y-axis and put Unstandardized Residual to the X-axis.
Then click on OK. SPSS then produces a plot similar to Fig. 7.13. The results do
not suggest heteroskedasticity. Note that it clearly seems that there is an outlier
present. By looking at the Casewise Diagnostics in Table 7.4, we can further
investigate this issue (note that we have set Casewise diagnostics to “Outliers
outside: 3 standard deviations” to be conservative).
Cases where the errors are high indicate that those cases influence the results. SPSS
assumes by default (see Fig. 7.10 under Outliers outside: 3 standard deviations) that
observations that are three standard deviations away from the mean are potential outliers.
The results in Table 7.4 suggest that there are four potential outliers. Case 257 has the
strongest influence on the results (the standardized error is the highest). Should we delete
these four cases? Case 257 seems to be very far away from the other observations (also
see Fig. 7.13) and is likely an entry error or mistake, meaning the observation should be
deleted. The other potential outliers appear to be simply part of the data, and should be
retained.

http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
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Fig. 7.13 A plot of the errors
against the dependent
variable’s values

Casewise diagnostics

Casewise Diagnosticsa

Overall
CustomerCase

Number
257 
600 
655 
1044 

Std.
Residual

Predicted
Satisfaction

13.89
10.46
17.12
10.82

Value Residual
-6.12239
-3.05122
2.71669

-2.59206

-7.212 
-3.594 

20.0091
13.5149
14.3997
13.4133

3.200
-3.053 

a. Dependent Variable: Overall Customer Satisfaction

u u u

The results of this test (Table 7.5) suggest that the errors are normally
distributed as we do not reject the test’s null hypothesis. Thus, we can assume that
the errors are normally distributed.

If we had data with a time component, we would also perform the Durbin– Watson
test to test for potential autocorrelation (fourth assumption). However, since the data
do not include any time component, we should not conduct this test.
Lastly, we should explore how the errors are distributed. Do this by going to u
Graphs u Legacy Dialogs u Histogram. Enter the Unstandardized Residual
under Variable. Also make sure that you check Display normal curve. In Fig. 7.14,
we show a histogram of the errors.
Figure 7.13 suggest that our data are normally distributed as the bars indicating the
frequency of the errors generally follow the normal curve. However, we can check this
further by conducting the Kolmogorov-Smirnov test (with Lilliefors correction) by goingto
Analyze DescriptiveStatistics Explore.Table7.5showstheoutput.
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Output produced by the Kolmogorov–Smirnov test

Histogram of the errors with a standard normal curve

Tests of Normality

Kolmogorov-Smirnova

Statistic 
.016 

df Sig.
.200*

UnstandardizedResidual 1639
a. Lilliefors Significance Correction
*. This is a lower bound of the true significance.

Shapiro-Wilk
Statistic df

.998 1639

Sig.

.041

Now we turn to testing for multicollinearity. There are two tables in which SPSS
indicates if multicollinearity issues are present. The first table is Table 7.11, in which
the regression coefficient estimates are displayed. This table output also shows each
variable’s Tolerance in the second to last column and VIF in the last column. In this
example, the tolerance values clearly lie above 0.10, and VIF values below 10,
indicating that multicollinearity is of no concern.
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Descriptive statistics table

Descriptive Statistics

Overall Customer
Satisfaction
Customer Expectations
Perceived Value
Customer Complaints

Mean

13.9999

13.0009
9.9990
.2288

Std. Deviation

1.00219

.99957
1.01018
.42019

N

1639

1639
1639
1639

7.4.4 Interpret the Regression Model Using SPSS

The results of the regression analysis that we just carried out are presented below.
We will discuss each element of the output that SPSS created in detail.
Tables 7.6 and 7.7 describe the dependent and independent variables in detail
and provide several descriptives discussed in Chap. 5. Notice that the deletion of
the outlier reduced the overall number of observations from 1,640 to 1,639. These
are the observations for which we have complete information for the dependent
and independent variables. Table 7.7 shows the correlation matrix and gives an
idea how the different variables are related to each other.
SPSS also produces Table 7.8, which indicates the variables used as dependent and
independent variables and how they were entered in the model. It confirms that we use
the Enter option (indicated under Method). All independent variables included in the
model are mentioned under Variables Entered and under b. Further-more, under
Dependent Variable, the name of the dependent variable is indicated.
We interpret Tables 7.9 and 7.10 jointly, as they provide information on the model fit; that
is, how well the independent variables relate to the dependent variable. The R2
provided in Table 7.9 seems satisfactory and is above the value of 0.30 that is common
for cross-sectional research. Usually, as is the case in our analysis, the R2 and adjusted
R2 are similar. If the adjusted R2 is substantially lower, this could indicate that you have
used too many independent variables and that some could possibly be removed.
Next, consider the significance of the F-test. The result in Table 7.10 indicates that the
regression model is significant (Sig. <0.5).
After assessing the overall model fit, it is time to look at the individual coefficients.
We find these in Table 7.11. First, you should look at the individual parameters’ t-
values, which test if the regression coefficients are individually equal to zero. If this is
the case, the parameter is insignificant. In the model above, we find

http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
http://dx.doi.org/10.1007/978-3-642-53965-7_5
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Correlation matrix

Correlations

Pearson Correlation Overall Customer
S atisfa ctio n
Customer Expectations
Perceived Value
Customer Complaints

Sig.(1-tailed) OverallCustomer
S atisfa ctio n
Customer Expectations
Perceived Value
Customer Complaints

N OverallCustomer
S atisfa ctio n
Customer Expectations
Perceived Value
Customer Complaints

Over all
Custo m er
S atisfa ction

1.00 0

.492

.766
–.14 4

.

.000

.000

.000

1639

1639
1639
1639

Custo m er
Expectations

.492

1.00 0
.478
–.07 3

.000

.
.000
.001

1639

1639
1639
1639

Perceived
Value

.766

.478
1.0 00
– .137

.000

.000
.

.000

1639

1639
1639
1639

Custo m er
Com plain ts

–.14 4

–.07 3
–.13 7
1.00 0

.000

.001

.000
.

1639

1639
1639
1639

three significant coefficients, those with p-values (under Sig. in Table 7.11) are
below the commonly used level of 0.05. Although the constant is also significant,
this is not a variable and is usually excluded from further interpretation. The
significant variables require further interpretation.
First look at the sign (plus or minus) in the Standardized Coefficients column.
Here, we find that Customer Expectations and Perceived Value are
significantly and positively related to Overall Customer Satisfaction.
Customer Complaints is signif-icant and negatively related to Overall
Customer Satisfaction. This means that if people complain, their customer
satisfaction is significantly lower on average. By looking at the standardized
coefficients’ values you can assess if Customer Expectations, Perceived
Value, or Customer Complaints is most strongly related to Overall Customer
Satisfaction. You only look at the absolute value (without the minus or plus sign
therefore) and choose the highest value. In this case, Perceived Value (0.677)
has clearly the strongest relationship with overall customer satisfac-tion. Therefore,
this might be the first variable you want to focus on through marketing activities if
you aim to increase customer satisfaction. Although standardized βs cannot be
fully compared when an independent variable is binary (as it is the case with
Customer Complaints) the comparison gives us a rough idea regarding the
relative strengths of the independent variables’ effects on the depen-dent variable.
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ANOVA a

The model summarya

Variables used and regression method

ANOVAb

Model

1 

Model Summaryb

Variables Entered/Removedb

Variables
Entered 
Customer 
Complaints,
Customer
Expectations,
Perceived
Valuea

Variables
RemovedModel 

1 .

a. All requested variables entered.
b. Dependent Variable: Overall Customer
Satisfaction

Adjusted R
Square
.608

Model R RSquare 
.609 1 .780a 

a. Predictors: (Constant), Customer Complaints,
Customer Expectations, Perceived Value
b. Dependent Variable: Overall Customer Satisfaction

Method
Enter

Std. Error of the
Estimate
.62756

SumofSquaresdf MeanSquare

333.754 
.394

F Sig.

.000aRegression 
Residual 
Total 

1001.261 
643.914 
1645.175 

3 847.453
1635 
1638

a. Predictors: (Constant), Customer Complaints, Customer Expectations, Perceived Value
b. Dependent Variable: Overall Customer Satisfaction
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The estimated coefficients

Coe ffic i e ntsa

Unstandardized Coefficients

Model B Std.Error

1 (Constant) 
CustomerExpectations 
PerceivedValue 
CustomerComplaints 

5.124 .215
.018
.018
.037

.164 

.677 
–.092 

a. Dependent Variable: Overall Customer Satisfaction

.163

.683
–.03
8

Standardized
Coefficients

Beta t

23.863
9.257
38.484
–2.458

Sig.

.000

.000

.000

.014

.77
1
.76
1
.98
1

1.296
1.31
4
1.01
9

Collinearity Statistics

Tolerance VIF

The Unstandardized Coefficients column gives you an indication of what would happen if
you were to increase one of the independent variables by exactly one unit. For example, if
Customer Expectations were to increase by one unit, we would expect Overall Customer
Satisfaction to increase by 0.164 units. The stan-dard errors are used to calculate the t-
values. If we take the unstandardized coeffi-cient of Customer Expectations (0.164) and
divide this by its standard error (0.018), we obtain a value that is approximately the t-
value of the 9.257 indicated in the table (see Chap. 6 for a description of the t-test
statistic). The slight differences are due to rounding. As indicated before, Customer
Complaints is a binary variable which can only take the value of 0 or 1. More precisely, for
those customers who have not complained thus far, Customer Complaints takes the value
0. On the contrary, if a customer has already complained, the variable’s value is 1 for this
observation. Thus, the corresponding coefficient (-0.092) is the difference in satis-faction
for customers who complained compared to those who have not complained. Overall, the
results indicate that we have found a useful model that satisfies the assumptions of
regression
analys is.

7.4.5 Validate the Regression Model Using SPSS

Next, we need to validate the model. Let’s first split-validate our model. Do this
by going to u Data u Select Cases. This displays a dialog box similar to Fig. 7.15.

In this dialog box, go to Select Cases: Range. This displays a dialog box
similar to Fig. 7.16.
Select the first 1,150 cases, which is approximately 70% of the data. Then run
the regression analysis again. Afterwards, return to Select Cases: Range and select
observations 1,151–1,639. Compare the results of this model to those of the
previous model. This approach is simple to execute but only works if the ordering
of the data are random.
Next, we can add a few key additional variables to our model and see if the
basic results change. Key variables with which to check the stability (the so-called
covariates) could be the total annual family income and the respondent’s gender.
Then interpret the basic model again to see if the regression results change.

http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
http://dx.doi.org/10.1007/978-3-642-53965-7_6
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Fig. 7.15

Fig. 7.16
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The select cases dialog box

The select cases: range dialog box

7.5 Farming with AgriPro (Case Study)

AgriPro is a firm based in Colorado, USA, which does research on and produces genetically
modified wheat seed. Every year AgriPro conducts thousands of experiments on different
varieties of wheat seeds in different locations of the USA. In these experiments, the
agricultural and economic characteristics, regional adaptation, and yield potential of
different varieties of wheat seeds are investigated. In addition, the benefits of the wheat
produced, including the milling and baking
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quality, are examined. If a new variety of wheat seed with superior characteristics is
identified, AgriPro produces and markets it throughout the USA and parts of Canada.

http://www.agriprowheat.com

This survey was mailed to 650 farmers selected from a commercial list that includes
nearly all farmers in the heartland region. In all, 150 responses were received,
resulting in a 23% response rate. The marketing research firm also assisted AgriPro to
assign variable names and labels. They did not delete any questions or observations
due to nonresponse to items.
Your task is to analyze the dataset further and provide the management of
AgriPro with advice based on the dataset. This dataset is labeled Agripro.sav and
is available in the 8 Web Appendix (! Chap. 7). Note that the dataset (under

AgriPro’s product is sold to farmers through their distributors, known in the industry as
growers. Growers buy wheat seed from AgriPro, grow wheat, harvest the seeds, and
sell the seed to local farmers, who plant them in their fields. These growers also
provide the farmers who buy their seeds with expert local knowledge on management
and the environment.
AgriPro sells its products to these growers in several geographically defined
markets. These markets are geographically defined because different local
conditions (soil, weather, and local plant diseases) force AgriPro to produce
different products. One of these markets, the heartland region of the USA is an
important market for AgriPro, but the company has been performing below man-
agement expectations in these markets. The heartland region includes the states of
Ohio, Indiana, Missouri, Illinois, and Kentucky.

To help AgriPro understand more about farming in the heartland region, they
commissioned a marketing research project among farmers in these states. AgriPro,
together with a marketing research firm, designed a survey, which included questions
on what farmers who decide to plant wheat find important, how they obtain
information on growing and planting wheat, what is important in their purchasing
decision, and their loyalty to and satisfaction with the top five wheat suppliers
(including AgriPro). In addition, questions were asked about how many acres of
farmland the respondents possessed, how much wheat they planted, how old they
were, and their level of education.

http://www.agriprowheat.com/
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
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Variable View at the bottom of the SPSS screen) contains the variable names and
labels and these match those in the survey. In the 8 Web Appendix (! Chap. 7), we
also include the original survey.8

To help you with this task, a number of questions have been prepared by
AgriPro that they would like to see answered:

1. Produce appropriate descriptive statistics for each item in the dataset.
Consider descriptive statistics that provide useful information in a succinct
way. In addition, produce several descriptive statistics on the demographic
variables in the dataset, using appropriate charts and/or graphs.
2. Are there any outliers in the data? What (if any) observations do you consider

to be outliers and what would you do with these?
3. What are the most common reasons for farmers to plant wheat? From which
source are farmers most likely to seek information on wheat? Is this source
also the most reliable one?
4. Consider the five brands included in the dataset. Describe how these brands

compare on quality, advice provided, and farmer loyalty.
5. How satisfied are the farmers with the brand’s distributors?
6. AgriPro expects that farmers who are more satisfied with their products
devote a greater percentage of the total number of acres available to them to
wheat. Please test this assumption by using regression analysis. In addition,
check the assumptions of regression analysis.
7. Is there a relationship between farmers’ satisfaction with AgriPro and the
respondent’s educational level, age, and number of acres of farmland?
Conduct a regression analysis with all these four variables. How do these
results relate to question 6?

8. Are all assumptions satisfied? If not, is there anything we can do about it orshould we ignore the assumptions if they are not satisfied?
9. What is the relationship between the quality of AgriPro seed and the satisfac-

tion with AgriPro?
10. As AgriPro’s consultant, and based on the empirical findings of this study,
what marketing advice would you have for AgriPro’s marketing team?
Provide four or five carefully thought through suggestions as bullet points.

http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7
http://dx.doi.org/10.1007/978-3-642-53965-7_7

